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Abstract 

A general  model  is  presented for mathematically  describing the physics  and  chemistry 
of biomass  pyrolysis in a  fluidized  bed  reactor. A three fluid  model (gas, sand, biomass)  is 
derived  by  taking  suitable  ensemble  averages of the local gas and  particle dynamicd equations. 
The turbulent  motion of the gas phase  is  predicted  by  a  turbulence  model  augmented  with 
additional  terms  accounting for the dispersed  phase  interaction.  Closure of the solid  phase 
transport equations  is  provided  in  terms of the separate  distribution  functions  for the sand 
and  biomass  respectively.  Interparticle  collisions  are  described  in the framework of the kinetic 
theory of dense gases using  inelastic  rigid  sphere  models.  Additional  relations  axe  provided for 
the interphase  mass,  momentum  and  energy  exchange  terms. The most important novelties 
of this model  compared to existing  ones are: (i) the modeling of the usually  neglected  stress 
tensor  resulting  from  sand-biomass  collisions,  (ii) the modeling  of heat  transfer  between  phases, 
as well as that resulting  from  direct  particle  contacting,  and  (iii) the modeling of particulate 
phase,  multiple  chemical  reactions  and the resulting  mass  transfer  between  phases.  Finally, a 
novel  numerical  algorithm  is  described to solve the resulting  set of equations and some initial 
results  are  discussed. 

1 Introduction 

1.1 Bio’mass  pyrolysis  and  model  requirements 
Biomass pyrolysis involves the heating of raw biomass or organic waste in  the absence of an oxidizer 
in order to  extract reaction  products for subsequent processing. The  interest in clean hydrogen 
fuel production has triggered the interest in h g h  temperature biomass pyrolysis and is aimed at  
maximizing tar  and gas yields while simdtaneously minimizing char formation. Among several 
rector geometries, the vortex reactor and  the bubbling fluidized bed are considered at NREL as 
alternatives for commercial pyrolysis. The vortex reactor was studied  earlier by coupling a detailed 
model for pyrolysis to a fluid dynamics model of the vortex reactor (Miller and Bellan, 1998). A 
similarly detailed study of the pyrolysis conditions in a bubbling (or  circulating) fluidized bed is 
not available in literature. 

- .  

Any comprehensive model for biomass  pyrolysis  in a process reactor consists of basically two 
main components: (i) a kinetics scheme for pyrolysis, and  (ii) a fluid dynamical  description of the 
chemical reactor.  These two model components both need to be of sufficient accuracy for accurate 
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prc?clic.t,io~ls o f  pro(llu:t, y i o l t l ,  ; u ( l  t,o i d i o w  for scxlsitivity stll(li(:s for t,hct cI(!tc’rIrliIl~Ltiotl o f  optiIx1al 
opcratirlg c:ontlitio~ls. It, is O I I I V  roc:orlt,ly t imt  ;L c:ornpletc kinetics 111otic:l wxs (iovisocl for general 
hiornass fc:(:clstocks (hlillcr itntl  B ~ h l .  1997). As fits xs the fluid dyn;LlItics o f  fltlidizetl bed reactors 
is conc:erneci, it is poorly understood altllo~lgh sorrlt: progress has been matie i n  recerlt years in the 
it.r(:it of qualitative prcdictions. 

To appreciate some of the difficulties presented in this  area we now discuss the physical  mech- 
anisms involved  in  biomass  pyrolysis  in a fluidized system. Basically the  system consists of a 
(cylindrical)  geometry  partially filled with sand.  The  sand’s main purpose is to provide a  large 
heat reservoir to keep the mean temperature of the bed reasonably constant. In turn, heat  has 
to be provided to  the  sand as pyrolysis is an endothermic reaction extracting  heat  from  the  sand. 
This is done in two  ways: heating the walls of the reactor and the injection of steam (or another 
nonreacting gas) which  is  also  used to fluidize the  sand. Both the speed at which  pyrolysis can 
occur as well as the reactive  products that  are formed depend strongly on temperature. At high 
temperature, pyrolysis is fast and mainly tar  and gas are formed, whereas at low temperatures, 
pyrolysis is very slow and leads mainly to char formation; as already stated,  our interest is in the 
high temperature regime. The particle temperature is therefore a crucial factor  in  obtaining the 
right  product  formation. Physically, heat  transfer to  the biomass particles is accomplished in two 
ways: (i)  interaction  with  the  surrounding gas flow, and  (ii)  heat  transfer  through  direct  contact 
with  another  particle  (sand or another biomass particle). It is  obvious that  the relative velocity with 
the  surrounding flow and contact  area are  important  parameters  with  respect to these mechanisms. 

The injection of steam fluidizes the  sand  and  the biomass particles leadmg to a violent gas and 
solids flow pattern  in  the  reactor, with both locally dense and void regions. An overall circulative 
complex flow occurs explaining this mixing behavior. The gas flow in the reactor is turbulent 
and  interacts  with  the particles in a pseudo-random manner. The gas phase  turbulence is in part 
responsible for affecting the particle velocity fluctuations which in turn affect the collisions  between 
particles. The extent to which t h s  interaction  happens  depends  on the solid particle  properties  and 
the turbulence. The  main mechanism responsible for  collisions  is shear which  is discussed below. 
The final role of the gas phase is  in the removal of gaseous products  such as the condensable tar. 

The sand  and biomass particles are of unequal size and density (and even shape).  In general, 
this causes segregation of the  sand  and biomass particles whch in turn may lead to inhomogeneous 
temperature  distributions  in  the biomass. As the reaction rates  are nonlinear in  temperature, this 
distribution  has an effect on  tar collection efficiency.  F’urther, note that  the segregation depends on 
time as the biomass particle’s mass changes as pyrolysis proceeds. 

It is clear from the above discussion that  at least the following building blocks  need to be 
included in a simulation model for biomass pyrolysis: (i)  separate  hydrodynamic  equations  (mass, 
momentum and energy)  for solids and gas, (ii) solid  species and gas species equations along with 
the kinetics model discussed earlier, (iii) heat transfer between both solids and  the gas phase, (iv) 
heat  transfer through direct particle contact (collisional and/or sliding contacts),  (v) gas phase 
turbulence model. 

At present  there is no complete  model available considering all of the above efects  simultaneowly. 

1.2 Modeling status of granular flows 

In the present subsection we  give a brief outline of models  for the prediction of granular  multiphase 
flows. Basically two main simulation methods  are available for particle flows, i.e. the Lagrangian 
and  the multifluid scheme. In the Lagrangian scheme, individual particles (or clusters)  are tracked 
through  the  surrounding gas using an equation of motion. The Eulerian, or multifluid scheme, con- 
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si(lt:rs c : o r ~ t , i ~ t u r ~ r ~ l  c([l l ;Ltj iorls for o;lc:ll  pili^';(: ()[)t;LiIl(:(f t)y ;lv(:ragiIlg til(: lo( : ;L1 irlst~~rlt;Lllc’()lls (!(l1latiors. 
Botll rxlctllocis a rc  wi(fcly tls<:tI in the prt:tiict,ion o f  disperse flows. Th: prrseIlt p q ) ( q -  (:oIlcentrates 
011 tht: fhkxian nlcthod xs it is much 1110r(: t>ffic:icmt for industri;Ll six(: sitllations wh(:r(! t,hc number 
o f  particles ~ 1 d  t f l ~  corresponciing details associateci  with thr; p;lrticle (*huacterist,i(:s exceed the 
computations1 capacity o f  modern computers when  using Lagrangian schemes. 

Two-fluid computations of fluidized systems started in the  late 70’s. In initial models it was 
already recognized that a solids ‘pressure’ was needed  in the solids momentum equation to prevent 
the volume fraction of the solids  from reaching impossibly hlgh  values (overcompacting). The 
form of this solids pressure gradient, VP,, in the solids momentum equation was initially highly 
empirical and was taken to be a strongly increasing function of the solids volume fraction. A Severe 
problem with  such models is that  the solids viscosity must be  specified empirically. In  spite of these 
drawbacks, simulations did show  many  of the characteristics of fluidized bed systems. Reviews of 
this type of modelling can  be found in Gidaspow (1986). Calculations based on these schemes have 
prevailed into  the early 90’s. 

At the  same time, it was  recognized that particles in rapidly sheared dry granular flows, i.e. 
particle flows without an interstitial gas, had a great  similarity with molecules in a dense gas (see 
Campbell, 1991 for an extensive review). The obvious analogy is that  the velocity of each particle  can 
be decomposed in a mean value and  a  fluctuation leading to  the concept of ‘granular  temperature’. 
Apart from the obvious analogy, a crucial difference  between the two systems is that collisions 
between the particles  in  a sheared granular  material involve a loss of energy. Consequently, energy 
must continuously be supplied to  the system in order to  sustain  the particle  fluctuating motion. 

Ding and Gidaspow (1990) were the first to apply the results &om dry granular flow theory to 
a fluidized bed.  The basis of their solids model were the results obtained by Jenkins and Savage 
(1983) using Maxwellian velocity distributions. Effects of the surrounding gas on  particle motion 
were added as  a  drag  term  in  the  momentum  equation  and  an  additional dissipative term in the 
granular temperature equation.  The  major  advantage of this kinetic model over previous models 
was that  particlephase viscosities and pressure were predicted by the theory,  eliminating the need 
for more empirical information. 

Since Jenkins  and Savage, there have been many papers improving on their  results;  landmark 
papers  include Lun et al. (1984) where the first non-Maxwellian theory is given, and  Jenkins 
and Richman (1985) who extended Grad’s  Hermite polynomial expansion theory (1949) to dense 
inelastic  interactions. All of these references pertain to dry granular flows. An  important extension 
of Jenkins and Richman’s paper was made by Simonin et al. (see e.g. Balzer and Simonin, 1993) 
who includes the effects of drag and gas phase  turbulence  in the analysis (also see Peirano 1998). 

The biomass pyrolysis requires the description of a  binary  particulate  mixture  (sand  and b i e  
mass). Analysis of binary dry granular mixtures  are available in literature  but all of these models 
assume equal  granular  temperatures and derive mixture mass, momentum and energy equations 
as is common in kinetic theory (see e.g. Jenkins  and Mancini, 1987, 1989). The present study, 
however, requires separate  transport  equations for these quantities. Note that  the equal granular 
temperature assumption is justified when the collision  frequency  is  high enough to equilibrate the 
granular  temperatures or when the mass ratio is not too high. The more general analysis of un- 
equal temperatures includes the equal temperature case as limit behavior. Finally, note that  the 
present authors know of only a single reference where an the actual binary mixture  computation is 
performed (Mathiesen, 1996). 
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1.3 Objectives and outline 
The prcvious two sectious have  listed thc reqnirernents that a rnotfel should meet and  an overview 
o f  what is available i n  literature with regard t o  hydrodynamics predictions of fluidized beds. As 
stated. none of the present models meets all the necessary criteria. The main objective of this 
paper is therefore to present a model of the thermo-fluid dynamics of a fluidized bed reactor that is 
sufficiently robust to include the aforementioned physical mechanisms. In  particular,  the  sand  and 
biomass ‘phases’ are governed by separate hydrodynamic equations derived from an appropriate 
kinetic theory. Heat  transfer between all phases is modeled, and occurs either  through  the gas or 
through  direct  particle  contact.  Further,  the model is  combined with a detailed biomass kinetics 
model making possible the prediction of tar  and gas collection in the  hnetic regime. 

The  paper is organized as follows: Section 2 presents the complete mathematical model, in- 
cluding a detailed  derivation of all the building blocks and modelling steps needed to complete the 
formulation. The differential equations  constituting  the model are solved with a new numerical 
algorithm which is outlined  in  detail in section 3. Results from a simulation of a simplified fluidized 
bed are presented in section 4. This simulation is mainly used as validation for the numerical 
algorithm  presented earlier. Section 5 is devoted to conclusions and a discussion of future model 
extensions. 

2 Mat hernat ical model 

2.1 Biomass  pyrolysis  model and phase topology 

The particle pyrolysis model employed here is that of the detailed kinetics derived by  Miller and 
Bellan (1997). The kinetics scheme is based on superimposed cellulose, hemicellulose and lignin 
reactions. This enables the simulation of different biomass feedstock through knowledge of the initial 
mass composition with  respect to these three primary components. Each of the virgin components 
undergoes the  same generic competitive reaction scheme: 

As indicated  in the above kinetics scheme, the virgin components, the active  intermediates and 
the char are solid phase species, while tar  and gas are vapor products;  these species are not  pure 
chemical species but represent groups of compounds. All reactions are modelled with first order 
Arrhenius kinetics; Ki = A, exp(-E,/RT); where the  rate  constants, Ai, activation energies, E* for 
reactions K1, Kz, K3 and  the mass ratio X are dependent  on the  particular  component, whereas all 
heats of reaction  and secondary tar decomposition parameters (K4) are independent of the source 
component. 

This kinetics model combined with a porous particle flow dynamics model yielded validated 
predictions on tar/char yields ranging from the kinetically controlled region (micro  particles) to  the 
diffusion controlled limit (macro  particles).  In the present paper, the biomass pyrolysis is assumed 
to be kinetically controlled, which simplifies the description of a biomass particle considerably. This 
assumption may be justified in the dense  particulate regime  where contact between particles may 
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i r l t l ucx :  f ~ i ~ ~ ~ ~ l ( ~ ~ ~ t ~ ~ t i t ) ~ ~  (sot! Millcr m d  Bt:ili~I1, 1998% rtyyt l ing i 1  fragrnent;ktion r ~ l ~ c l o l )  ;lIld reduce 
t,hc size o f  the  particlw to the point that t,ilt: interrd ternperature  equilibrates rapidly. Thus,  the 
particlc temperature, its mass and composition (global solid mass fractions) completely describe 
the  state o f  the particle. 

The  sand  and biomass particles are  both solid and hence thermodynamically belong to  the  same 
phase. They, however, have different  physical properties  and different temperatures  etc.  Therefore 
these  particle classes are handled separately as if they were  different phases. 

2.2 Ensemble averaging 
On a local scale, the flow  of a gas-particle mixture can be described by the  equations of motion of 
the fluid coupled to  the motion of the discrete  particles, governed by Newton’s law. This description 
leads to details that  are  not of immediate  interest. By application of an averaging procedure, these 
details can  be filtered out  and  the result is a set of equations of motion describing the mixture 
on a macroscopic scale, i.e. the continuum description. A phase ensemble average is used for the 
continuous phase  (that is, the average is defined  over all configurations such that at time t the point 
x is in the continuous phase)  but  not for the particle phase. For the  particulates we introduce a 
particle ensemble average where global particle  properties  are averaged directly. This is attractive 
when resolution of the detailed degrees of freedom of the particles (e.g. internal  temperature profiles 
or profiles  of the  internal chemical composition) is undesirable or unnecessary. We  closely  follow 
the exposition of Zhang and  Prosperetti (1997). 

Consider an ensemble of macroscopically identical suspensions of N, sand particles  and Nb 
biomass particles in a gaseous carrier phase. Also define the  total number of particles, N = N, + Nb. 
Following Zhang and  Prosperetti (1997), we define a configuration to be  the specific dynamical state 
of the  system at time t. We also define 2 to be  the vector specifying the degrees of freedom that 
uniquely identifies this  state. In  particular, 2 includes the locations of the particles’ centers of 
mass { y i , y i } i  = l..iV,;j = l..Nb, their linear velocities {w‘, wj}, etc.  Note that for an inviscid 
flow these  are sufficient to characterize the complete state of the system.  Here, however, 2 must 
also include degrees of freedom of the continuous phase to fully characterize the system’s dynamical 
state. P(N,,  Nb; t )  is defined as the probability density of encountering configuration 2 in the 
ensemble at  time t. P ( N ;  t )  = P(N,, Nb; t )  satisfies the following normalization  rule 

/ P ( N ;  t)d2 = 1 

where d 2  is a volume element in phase space. If f is some field quantity, then  its ensemble average 
< f > r e a d s a s  ,. 

From ths definition it is clear that ensemble averaging commutes with time  and space-derivatives, 
Le. Leibniz’ and Gauss’ rules: 1. 

< Of > = v <  f > 
a f  d < f >  < -  >= 
at at 

In order to be  able to derive phasic ensemble averages, it is convenient to  introduce  the phase 
indicator  function xk(x, t ) :  

1,ifx E k 
0 , otherwise 
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This equation is used extensively in the derivation of the average transport  equations given in  the 
next section. The gradient of the indicator function is nonzero at points in the  mixture  that lie on 
the interface between phase k and the  other phases. The components of v x k  constitute  the unit 
normal vector at  the interface multiplied by a delta function: 

where n k  is the unit normal vector pointing inward with respect to phase k ,  and  the xi constitute 
all points on  the interface. The ensemble average of the phase indicator is the probability that a 
point is in phase k and is defined as the phase fraction a k  

From these definitions, the consistency condition x k  (Yk = 1 follows immediately. The phase en- 
semble average of a quantity q k  of phase k can now be defined in  terms of the probability  density 
and  the phase  indicator 

This is the average that will be used  for averaging the carrier phase variables. 

mixture as a whole; thus we may write 
A s  we mentioned earlier, ensemble averaging commutes with the derivative operator for the 

Here the  term < f k v x k  > represents an interfacial average that leads to a finite  contribution in the 
macroscopic equations. 

As the carrier  phase is compressible, it is convenient to define a density-weighted average similar 

Similar averages could be defined  for the particle phases (see e.g. Drew (1983) for such an ap- 
proach) where the solid particle is described as a continuum material  with  certain  elastic properties. 
Such an approach does not  treat particles as single entities  and makes it more difficult to include 
particle physics into  the model. It is therefore more  convenient to recognize that rigid particles 
can be completely described in terms of t6eir linear and angular velocities. Zhang and  Prosperetti 
(1997) proceed to derive the single particle velocity distribution, by integration of P(N, ,  N b ;  t ) .  Let 
f i l ) ( x ,  w ,  l$, T ,  m, t )  denote  the single particle  distribution function of particle class k such that x 
is the probable number of particles of class i having their center of mass in  the region [ x ,  x + dx] ,  a 
velocity in  the region [w, w + d w ] ,  mass in the region [m, m + dm], mass fractions  in [l$, q + d q ] ,  
and  temperature in [T, T + dT]. Then f is related to P in the following manner 
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wllcrc t h c  integration is  ovrtr d l  tleqcos o f  fretxioml except thost: c:xplicitly tit4nirlg the state of 
particlo I ,  i .0.  the positkm o f  its center o f  mass, its center o f  mass velocity, its cornposition, its 
t.crnper;Lturct, and its mass. The number density, n k ,  o f  particle phase k follows by integration of 
the single-particlo distribution function f k :  

where d 2 P  is shorthand for the set of integration variables. The mass of the particles need not be 
a constant, therefore m a s  weighted averages are also introduced: 

where r 

This definition of the mass-weighted particle average is completely comparable to  that used  for the . 

carrier phase and leads to more convenient  forms of the moment equations derived later. 
The macroscopic equations contain certain interfacial coupling terms describing the various 

transfer processes taking place through  the interface. As noted,  these terms  are of the form < 
f k v x k  > (where f k  is generally a flux). This average is taken over all realizations at a fixed point in 
space. On  the  other  hand,  the particle phase is described by a  particle ensemble average. It would 
seem tempting to  equate  an interfacial average to  the average  over the interface of a  representative 
particle. This is  however only correct for  homogeneous flows. The cause of this difference lies in 
the positions at which contributions to  the average are  obtained (the interfacial average having 
contributions only at  the point of interest where an interface exists; the particle average having 
their center at  thls point and accumulating contributions from the interfaces belonging to these 
particles). 

Bulthuis (1997) has derived the result that for particles of general shape, the interfacial average 
can  be  written as a series expansion of particle averages: 

where the overbars denote particle ensemble averages, the integrals are over the particle surface and 
where s = x, - XO, and x0 is the center of the particle. The first term of this  expansion gives the 
intuitive  equality discussed earlier where the interfacial average is set  equal to  the surface average 
of an ensemble of test particles. P 

An important result is obtained by taking f k  = 1: 

vQk = VnT + ... (17) 

where T is the average volume displaced by the particle.  This shows that relation (15) is not exact 
in the general case of inhomogeneous flow. The macroscopic equations derived from these theorems 
are therefore valid only in flows exhibiting mild gradients (a condition that is assumed below as 
it is inherent in all derivations of particle conservation equations based upon  hard  sphere kinetic 
theories, see Jenkins and Savage, 1983). 
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2.3 Averaged  equations for the gas phase 
2.3.1 Local instantaneous flow description 

The  starting point for the derivation of the macroscopic carrier phase equations are the local  in- 
stantaneous  equations in the gas phase expressing the conservation of mass, momentum, energy, 
and species mass fractions: 

- + v .  (pu)g = 0 dp9 
at 

- Dh, = "c7. %+" 
p g  Dt Dpg + SiAh, - (r : Vu), Dt 

a ( f % ) g  

dt + V ( p u Y ~ ) ~  = -V j, + pgR,t 

Here, we assume the gas phase to behave as a simple Newtonian fluid: 

ug = -%I +  VU^) + - 2/3(V - u,)] 

and  further  assume  the gas mixture to be ideal: 

where Ro denotes the universal gas constant  and WE is the molecular  weight of specie <. The specie 
flux j, is written as a  simple  gradient diffusion (Fickian) relation neglecting all multicomponent 
behavior: 

j, = -pglDEVYg 
The  heat flux is given  by 

9, = -XgVTg - x htjt 
€ 

where the second term represents the interdiffusion of heat. This set of equations (supplemented 
with appropriate  boundary conditions) is a closed system for the local description of the gas phase. 

2.3.2 Macroscopic equations 

The macroscopic gas phase  equations  are derived by multiplying the local instantaneous  transport 
equations of the previous section by the gas phase indicator x ,  and ensemble averaging. After some 
manipulation  this yields b 

- Oh, 
P g K  - "V.[ aq - + qR"], + x S i A h ,  + F' + I?,(% - x,) 
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where the effect of pressure and viscous dissipation i n  the energy equation has been neglected. To 
keep the expressions tractable, several new variables have  been introduced.  These can be divided 
into  three  groups. 

(i)  interfacial coupling terms 
M, = - < U ,  * Gx, > (30) 

Hgt =< .igt . Vxg  > (31) 
F,=<%*Vx ,>  (32) 

(ii)  additional  interfacial  transfer  related to  the transfer of mass between phases 

rgQt =< P , Y g € ( U g  - ugi) * vx, > 

rghi =< Pghg(Ug - U,i) - VX, > 
h.  

(iii) fluxes related to  ‘turbulent’  fluctuations 

where the fluctuations  result from a decomposition of the instantaneous  variable  into  its  mean  and 
a fluctuation, e.g. ug = ii, + u;. Owing to  the usage of appropriate density-weighted variables? 
the general form of these  transport  equations is comparable to their local instantaneous form. 
The continuity  equation  contains a single source  term, r,, representing the average mass source 
for the gas phase.  There  are basically  two  mechanisms that give  rise to stress/flux  terms  in  the 
averaged equations. The first one initiates in the (averaged) molecular stress/flux  terms, F,, jge. and 
q,,Note that since the molecular  fluxes are linear in gradients of velocity and species mass fractions, 
these  terms  are  not closed  owing to  the fact that  the derivatives and  phase ensemble averaging 
operators  don’t  commute.  The second contribution to stresses/fluxes arises from the nonlinear 
convective terms in the  transport equations: the terms C y ,  jz and e a r e  fully comparable to their 
counterparts found in single-phase tubule& flows. Finally two types of source-like contributions  can 
be identified in the equations: the terms M,, HgE and F, that represent the transfer of momentum, 
species and  heat  through  the interface and similar transfer terms that  are related to  the transfer of 
mass between the phases. 

- 
- 

The averaged equation of state reads 
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2.4 Derivation and closure of the moment equations for the solid phases 
2.4.1 Introduct ion 

The particle averages were  defined  in an earlier section. In this  section we derive the moment 
equations describing the particles in a macroscopic sense. The derivation given  below strongly 
resembles that used in the kinetic theory of dense gases. In particular, the  starting point will be two 
coupled Boltzmann  equations describing the evolution of the single-particle distribution  functions, 
f!'), for each particle class i. A distinction from 'ordinary' kinetic theory is that  the particles are 
suspended  in a gas, whereas molecules of a gas have only the  interaction  with  other molecules. 
The infiuence of the 'interstitial' gas enters  the Boltzmann equations and consequently gives  rise to 
terms in the moment equations describing the coupling between particles and gas in a macroscopic 
way. The  separate Boltzmann evolution equations  are coupled through the collisions that  take place 
between the particles of the  separate particle classes. If these were absent  (or negligible as they are 
in  the very dilute limit), the Boltzmann  equations would  decouple as the effect of the  interstitial 
gas would become dominant. Again, this is a major difference with molecular kinetic theory. 

The final difference between the two systems is the inelasticity of the collisions in  the gas-particle 
system. Consequently, as already mentioned in  the introduction, the particle  fluctuations  can  not 
be sustained  without a supply of energy from some source (usually from the  main flow through 
mean shear). 

Here we discuss a binary  mixture of particles suspended in a turbulent carrier gas. Binary 
granular  mixtures have been extensively studied in literature (e.g. Farell et al., 1986; Tham  and 
Gubbins, 1971). However, none of these  studies  deal with the effects of an interstitial gas. Related 
to this, all models ultimately assume the granular  temperature to be  the  same for each particle 
class. This  assumption is acceptable when the mass ratio of the particle classes is not  too high and 
there  are no  'external' infiuences on the particle that may regulate the particles  temperature. 

The present situation is more complex. In dilute  situations, the  granular  temperatures of the 
particles may be  quite different as they react to carrier-phase turbulent  fluctuations,  and collisions 
are not frequent enough to  equilibrate  them. Therefore, below  we generalize the analysis by using 
distinct  granular temperatures for each class of particles. Another aspect  shared by  all papers on 
binary granular  mixtures is that mixture equations  are derived. Our  interest is in deriving separate 
moment equations for each class. 

The next section describes the derivation of the moment equations from the Boltzmann  equation. 
The collision dynamics  and the particle dynamics are discussed  in subsequent sections. Finally, 
closure is considered. 

2.4.2 The transport theorem 

The  distribution functions for  each class are given by solutions of separate Boltzmann equations 
(Jenkins  and Mancini, 1987) 

10 



(41 1 
Here, the time-derivatives are to be taken along the particle trajectory.  The right hand  side 

of each of these  equations denotes the  rate of change of the distribution functions due  to particle 
collisions, both with  particle belonging to  the same class and with other  particles as well. It should 
be understood that  the  term representing the presence of species is only present for the biomass. 
Recall the mass weighted ensemble particle average 

This average will also be denoted  with  brackets,' i.e.< \E >= \Ek , which is easier for notation. 
Multiplying the Boltzmann  equation by mi9 and integrating over phase  space leads to a dense 
transport  theorem  that holds for a generic variable 9i pertaining to class i 

- 

where the convective part has been decomposed in an average and a Reynolds-like  flux term. 
Ci(mi9i) is the mean collisional rate of change of particle  property 9;. It represents an inte- 
gral over all possible (binary) collisions of the change in mi** multiplied by the probability that 
such a collision occurs. Jenkins  and Mancini (1987, 1989)  show that this integral  can  be  written as 
the sum of a source-like contribution and a flux term, representing transport by  collisions: 

The precise.forms of the collisional integrals for general mixtures that have been given  by Jenkins 
and Mancini (1987,  1989) are very complex and  are generalizations of the ones used for single class 
systems. The moment equations  are now easily derived by identifying the generic variable 9 with a 
specific  choice. Important  to note at  this point is that  the moment equations  equations  can only be 
written when the collision dynamics and  the  particle dynamics along its motion are  both specified. 
These two subjects  are discussed subsequently. 

2.4.3 Collision dynamics 

It is assumed that only binary collisions take place, i.e.  collisions between multiple particles are 
neglected. Although at high solids concentrations this is questionable (especially when the particle 
size ratio is large), it is the only mathematically  tractable approach (even in the simpler, molecular 
theory; see Chapman  and Cowling, 1970). 

After  Jenkins  and Mancini (1987), we consider two particle classes, A and B. These particles 
are assumed perfectly smooth and spherical. Their respective masses and  diameters axe mA, mB, 
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nji, anti rrm. Considcr a collision txtween particle 1 o f  class L anti particle 2 of class k where i and 
k may he A or B. Fnrthcrmore, primes will be useti to denote a variable right  after collision, a 
variable without, a prime denoting a variable right before  collision; this notation is  used throughout. 
Below  we consider the conservation of rnomentum and energy (mass and species are  trivial)  during 
a collision between particle 1 and 2. 

Momentum The relation between the velocities of the particles right before and after a collision 
can be determined from the conservation of momentum and (mechanical) energy. Define the relative 
velocities c21 and cil as 

c21 = c2 - c1 
Chi = c2 - c; I 

Let k be  the unit vector directed from the center of particle 2 to  the center of particle 1 at collision. 
Then  the components of the relative velocities in  the direction of k before and after collision axe 
assumed to be  related by 

k c& = -eik(k c21) (49) 

where eik is the  restitution coefficient  for a collision  between a particle i and k (note: e i k  = eki). 

Further d e h e  m i k  = m, +mk and Mi = m,/mik. The center of mass velocity G i k  is constant  during 
a collision and equals 

G;k = M k C 2  f M ; C l  = M k C L  + M i C ;  (50) 
Finally, we have 

Now in general for any particle  property XP = Q(c)  these relations may be used to calculate its rate 
of change 9' - XP in a collision. 

Heat At the onset of this section we have assumed collisions to  be  binary  and instantaneous. 
As a result, the heat exchange between particles during a collision vanishes. This is however not 
realistic. A true collision (or more accurate; an interaction) will be somewhere between a collision 
and a sliding contact. We will characterize an interaction between two particles by a contact area 
A, and a contact  time 7,. The heat  transfer  during this contact is readily estimated by the model 
of two uniform one-dimensional, semi-infinite slabs at temperatures TI and T2, conductivity X1 and 
X 2 ,  and  heat  capacities Cpl and Cp2. The heat exchange during this  contact  then equals 

where w,  = d m .  This analysis is  valid for short  contact times only, as it is based on  penetration 
theory. The contact  area is  mainly determined by the smallest particle  (having  radius rs) .  The  area 
is estimated as  the surface area  spanned by a solid contact angle R, of order one: 

A, = OCrs 2 (54) 

The contact  time is further  estimated 

T ,  = Kc TS 

IC2 - c11 
(55) 
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2.4.4 Particle dynamics 

The second component needed for the  derivation of the moment equations is the  rate of change of 
the particle  properties along their  trajectory. 

Species As outlined  earlier, the biomass kinetics behaves volumetrically, i.e. the mass conversion 
rates  are  linear  in  the mass of the  particle itself. In general we may write 

“E- dm, - dmY 
d t   d t  

- mR,: 

where Re represents the  total  rate,  and may be  the sum of several reactions involving the same 
component. As an example, the  rate R for the one of the active solids species is 

The  rate depends  (linearly) on the mass fractions  and nonlinear on the particle  temperature. Fkom 
the previous equation  one  obtains the  rate of change of I$ 

“ dYF YE d m  __ RE - -- 
d t  m d t  

Mass The  rate of change of the particle mass  is obtained by summing the individual species rates 

- - ~ - - “ m ~ ~ ~  dm - d m €  __ 
d t  dt E E 

In  practice, only some  reactions  contribute to phase change. In the present case, only reactions rC, 
and K3 need to be considered. 

Momentum The  rate of change of the velocity of a single particle  in a gas  can be  written as 

d w  
d t  

m- = FP = m g  - V,Vv ,  + Fr 

The terms  on the right  hand side denote the gravitational body force, the force due to  the gas 
pressure  gradient  and the drag force. The drag force can be written  in the general form Fr = 
- p , ( ~ d ~ / S ) C d l u , I ~ ,  with = w - u ,, u and yg are the velocity and gas pressure of the 
locally undisturbed fluid flow at  the position of the particle center. In the  dilute regime, the  drag 
coefficient is determined from the correlation Cd = 24,’ Re,( 1 + 0.15 whereas in the dense 
regime, an Ergun  relation is  used. Note that Cd may  be corrected for the blowing of the particle as 
in the validated model of Miller et  al.  (1998b). 

c)  * %  t”f 
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d (  m h )  dm 
" 

d t  - Qr + Qn/t + -hv d t  
where h and h, denote the average enthalpies of the particle and vapors exiting the particle, r+ 
spectively. The combined effect of convective and conductive heat transfer  can  be  written as 

c )  

Qr = -X gdffNU(Re7  Pr)(T - T 9 )  (62) 

where the  appropriate Nusselt relation depends  on the operating  parameters  (slip velocity etc.). 
The  introduction of the effective particle diameter, de,,, is a way to correct for the porosity of the 
biomass particles. For the sand,  the  last two terms in the balance equation  are  absent. 

2.4.5 The  moment  equations 

By making specific choices for the general variable \T! in  the  transport  theorem, specific moment 
equations are recovered. 

Mass The mass conservation equations  are recovered  by taking \k = 1 

where the mass  transfer ri = aiG < -$% >= ai% Et < RE > can be coupled to  the conversion 
rate of solid- to  gas-phase reactions. For the  sand, t b  term is absent. 

Momentum The momentum  equations are generated using $ = w 

-V a Xi + X i k ( m i w i >  ( 6 4 )  
k=A,B 

where X; = ai& < wid, > +Ck=A,B 6 1 i k ( r n , w i ) .  The first term  on the right hand  side is the 
average force exerted on the particle by the surrounding gas; the second represents the effect of 
mass transfkr. The effective stress tensor X; consists of a kinetic part  and a collisional part which 
incorporates both effects  from  collisions between particles of the same class and between unlike 
particles. The final term in the  transport equation is a source term which is also composed of 
collisional contributions between like and unlike particles. However, as total linear momentum of 
phase i is conserved in a collision between two particles of that phase, only unlike particle collisions 
contribute to this term.  Note  that  an equivalent term does not appear  in  singleclass systems. 

Species Taking $ = Yt gives - 

The first term on the right hand side denotes the turbulent  transport of the mass fraction. The 
second term, = a,& < RC > is the average mass source arising from  reaction.  Note that no 
collisional terms  are present as the mass fractions do not change during a collision. 
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Granular   temperature  W t e n  the gerlrxal vitriable Q is ;L function of the Huctuating velocity 
rather  than  the actual vclocity, the transport theorem needs to be retierived (.Jenkins xnci Richman, 
1987; Chapman and Cowling, 1970). Doing so and applying the  s:~nle proccdure a s  used for the 
other nlomerlts to the variable 9 = 1 / 2 4  one obtains 2 

where Qi = 1/3wf  is the granular  temperature  and q, = sip, < 1/2wfwi > + x k = A , B  Bik(  1/2miwf). 
The first term  on  the right  hand side is the production of fluctuational kinetic  energy due  to shear- 
ing of the solid phase this mechanism being identical to  that found in single-phase turbulence. The 
mechanical energy balance of the particle mean motion contains this term  with  the opposite  sign 
expressing an exchange mechanism. The next term denotes the flux of fluctuational energy due to 
velocity fluctuations themselves (kinetic part)  and  due  to collisions (again  containing  contributions 
from both like and unlike particles). Similar to  the momentum equation, the source term is com- 
posed of a sum over both particle classes. Here, however, due  to  the inelasticity of collisions, both 
parts indeed contribute.  The effect of mass transfer is contained in the forelast term.  The final 
term represents the coupling with the surrounding gas phase. 

Heat Choosing \k = h, one obtains 

Here, the  terms  on  the right  hand side denote the mean heat transfer with  the  surrounding gas, the 
heats of reaction, the mean enthdpy of the vapors exiting the porous particle, a mass transfer term 
resulting from the non-conservative form of the equation, the  'turbulent' flux and the collisional 
contributions. The source-like term x only contributes  through collisions between unlike particles. 

2.4.6 Closure 

The above system of equations contains several correlations and is therefore unclosed. Several 
types of correlations may  be distinguished: (i) Mass transfer  (reaction)  related correlations. (ii) 
Kinetic contributions to  transport processes (Reynolds terms). (iii) Collisional contributions to 
both  transport  and source  terms.  (iv) Indractions with the surrounding gas. 

In principle, all correlations could be  computed from the single particle velocity distribution 
(except for the collisional integrals which require knowledge of the complete  pair  distribution func- 
tion,  and  the gas-particle interaction which requires a joint probability distribution function of the 
gas and particles phases). The single particle distribution functions are solutions of the Boltzmann 
equations given earlier. These solutions are too complex to derive  when the phase  space includes so 
many variables (mass fractions,  temperature,  etc.). Therefore, the  distributions  (and  the Boltzmann 
equations)  are reduced to include only the distribution of velocities. 
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I n  the present paper, a further simplificatiorl is rnatie. Instead of using a  distrihltiorl as com- 
puted from the Boltzmann  equations, a blaxwellim  distribution is assurned, i.e. the lowest order 
approximation to the Boltzmann equation: 

This is a  good  approximation when the flow has small spatial  gradients, the collisions are nearly 
elastic and  the particles are heavy enough (as measured by the turbulence time scales being  much 
smaller than  the particle relaxation time, i.e. the particle-fluid correlation is small). 

The mass exchange terms in the mass and species equations are  evaluated at  the average tem- 
perature  and mass fractions, i.e. 

E € 

and a similar expression for the species mass sources. This procedure neglects correlations between 
temperature and the mass fractions. As the species equations  are of first order,  these  approximations 
are not too  strict. A comparable approach, using mean values of temperature, is used  for the 
evaluation of the  heat of reaction and  the average enthalpy flux of the vapor  products. 

The momentum and granular temperature equations also contain mass transfer  related terms. 
They have the general form 

where 4 is the particle  property of interest.  These correlations are modeled as 

Two types of kinetic stresses  are present in the equations; those depending on  the velocities only 
and  those that also depend  on some other variable, e.g. < w'Y; >. The first are readily calculated 
from the Maxwellian distributions. The second type  has  to be modeled since the distribution of 
the  transported variable is not available. The approach followed here is that taken by Louge et al., 
(1993). Using elementary kinetic theory, the kinetic transport  terms  may  be  written as diffusion 
fluxes, e.g. - 

-V * a;p; < w'Y' >= V - a,p,Di;VY,( ' ' E  (72) 
where Dii is the self diffusion  coefficient of particle class i. This coefficient may be calculated from 
the Maxwellian distribution (see Chapman  and Cowling, 1970). A similar relation holds for the 
enegy equation. 

The collisional contributions  are  dependent  on the complete pair distribution function defining 
the probability that two particles have certain positions and velocities. This pair distribution is 
then expressed as the  product of the single particle  distribution of each particle  with  a factor that 
incorporates the effect of the excluded  volume. The collisional contributions may then be calculated. 
The results of these  computations axe similar to those given by Jenkins and Mancini (1987). 

The final class of correlations concerns those containing the effects of the  interstitial gas. Both 
energy and granular temperature equations contain terms  that reflect interaction 
gas. The interaction  term in the momentum equation may be  expanded to read 

the  momentum, 
with the carrier 

FP VP - 1 a$; < - >= aapJg- < -v p 9 > - < -(w; - H u g )  >] 
m, mi 7 1 2  
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Similarly, for the drag force related term: 

where fluctuations in the particle relaxation  time  are neglected. The particle average of the locally 
undisturbed velocity is usually set  equal to  the phase averaged  velocity: < v, >= ug. A similar 
procedure is followed  for the interaction term in the granular temperature equation: 

- 

where we have decomposed the  undisturbed gas velocity as Tg =< yg > +u:. Note that all of 
the above averages are particle averages. The first term on the right hand side is the fluid-particle 
correlation and may be either positive or negative; the second term is inherently  negative and 
reduces the granular  temperature  due to particle drag. For heavy particles the first term is small 
and may be neglected. The end result is 

The energy equation contains the  interaction  term aipi < QT,* > that accounts for the gas- 
particle  heat  transfer. The following closure is  provided  for this term 

where the average Nusselt number is calculated from the mean slip velocity, etc. For low turbulence 
intensity of the gas and solids (compared to  the average slip velocity), this is an  accurate approxi- 
mation.  Note that Louge et al. (1993) have incorporated the effect of particle velocity fluctuations 
on the Nusselt number. In view of the complexity of the overall problem, such an approach  has  not 
been pursued  here. 

2.5 Closure of the gas phase  transport  equations and the modeling of 
turbulence 

The gas phase macroscopic equations derived previously contain  correlations that need to be ex- 
pressed in terms of the average variables in order to obtain a solvable system.  When phase ensemble 
averages are  taken for both phases, it is customary to write jump conditions which lead after aver- 
aging to relations between interfacial coupling terms in the macroscopic equations. Here, ensemble 
particle averages are used for the  particulate phase where the particles are described in terms of 
global parameters. Hence, no  local jumpconditions can be defined. Integral conservation relations 
can however be specified. More  specifically, the  standard local jump conditions  are  integrated over 
the surface of the particle and the contribution from the particle side of the interface is replaced by 
the  rate of change of a particle property. 

In this  section, we start with a discussion of the closure relations for the momentum equations, 
except for the Reynolds stresses. These are  the  subject of the next section. The subsequent sections 
discuss closure of the energy and species equations. 
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2.5.2 Moment um 

The momentum  equations contain four unknown correlations, a molecular and a  turbulent  stress, 
interfacial coupling and a mass transfer related  term. The turbulent Reynolds stress is discussed in 
a separate section. The mass transfer related term is easily approximated as 

Hence, the average interfacial gas velocity is approximated by the biomass velocity. 

the momentum  transfer term may be decomposed into two contributions: 
The molecular stress and interfacial coupling are discussed together. Following Drew (1983), 

M, = -&,VCY, + M$ 

where the first term is  called the buoyant force and accounts for the effect of the average interfacial 
pressure distribution,  and Mi =< (pg-p~)Vxg-rg-Vxg > denotes the remainder of the momentum 
interaction. The objective of t b  splitting is to incorporate, to first order,  the effect of non- 
homogeneity of the mixture. The momentum  equation is now 

where the difference between the averaged gas pressure and  the average interfacial pressure has 
been neglected. The phase averaged  viscous stress is  now approximated by a form similar to  its 
microscopic counterpart - 

7, = p ( (  Vzi,) + (VG,)T - 2/3(V - G,)]  

The interfacial  transfer  term consists mainly of drag in gas-particle flows and  the expression is 
taken to  be  the sum of the expressions used in  the averaged  solid momentum  equations. 

2.5.3 Turbulence transport modeling 

Second order closure models constitute  the highest possible  level of closure currently feasible in 
terms of computational effort.  On the  other  hand, two-equation models represent the minimum 
acceptable level of closure that specify an  internal length scale. All of the models presented in 
literature for fluidized beds use a k - E based gas phase turbulence model (or none at all). It has 
been argued  (Balzer, 1993) that  the precise turbulence model  is not very critical in the dense regions 
of the bed as the particle motion is completely dominated by collisions. In  the present application 
however, i t  is important  to have an accurate prediction of heat  transfer processes and hence to have 
an  accurate turbulence model. The gas phase turbulence model is also important in the prediction 
of the recirculating gas flow pattern in and  around  the ‘bubbles’ (Balzer, 1993) in the fluidized bed 
which in turn may have  effects  on the  thermal  and reactive behavior of the bed. 

The  transport equations for the Reynolds stress tensor can be derived by considering the fol- 
lowing ensemble average < x,u:N(uj) + xgu$N(u,) >. Here, N(u,) represents the Navier Stokes 
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where all phase indices  have  been omitted for clarity. The terms on the right hand side are abbre- 
viations of the following  averages 

Here, Pij represent  production  due to mean  shear;  note  that this term does  not need closure. Tij 

denotes the  turbulent  transport  due  to velocity fluctuations. is the pressure-strain  correlation 
responsible for redistribution of energy  among the various components. Viscous dissipation is  in- 
corporated  through ~ i j .  The  term Wij is an interfacial average and  represents the production  or 
dissipation due  to interfacial work. Finally, the last  term  accounts for the effect of mass transfer 
between phases. All terms in this equations except for the last two contributions have counterparts 
in single-phase flows. It is therefore  not  surprising that  the modelling of the correlations is tailored 
after the single-phase flow case. The modeling of these  terms is discussed below. 

The most  popular model for turbulent  transport is the Generalized Gradient Diffusion Hypoth- 
esis (GGDH) by Daly and Harlow (1970). In  this model turbulent  transport is expressed in  terms 
of the  gradient of the stress  tensor.  Due to  its form, it is able to describe  counter  gradient diffusion. 
A drawback however is its violation of invariance. Extended to  compressible multiphase flow, the 
GGDH reads 

At high enough Reynolds numbers the small scale turbulence is in local equilibrium, having 
isotropic  dissipation. This is the most common assumption used in stress  transport models. Here, 
it is assumed that  the presence of the particles does not affect this local equilibrium  too much, i.e. 
isotropy is still assumed: 

1 2 -  
& ' 3= -&j. .  = "ap& 

13 2 '3 3 
(85) 

This is consistent  with the experimental result that particle  laden flows  have an energy spec- 
trum  that  exhibits  the same power dependence ( - 5 / 3 )  as single-phase flows. The pressure strain 
correlation is a  redistribution  term, i.e. it is traceless, I l l l  = 0. Having the same  order of magnitude 
as the  production  terms,  it plays an important role in accurate  prediction of stress  anisotropy. Most 
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An alternative expression may be the  'standard model' (Gibson and  Launder, 1978). The  'standard 
model', however is more complex to implement than  the above compressible form. 

The interfacial work term is repeated here for  convenience: 

This  interfacial average can  be  rewritten as a series of particle averages of which the first term states 

xj = n[u: J dSlajl+ U: J d5'10uJ ( W  

where the overbar  indicates particle averaging and where the velocity fluctuations have been taken 
outside  the surface integrals. This final manipulation is  possible  when the particles are  nonrotating, 
i.e. in that case the velocity of their  surface is essentially constant. Now note  that  these surface 
integrals are  the components of the force exerted on the particle, i.e. 

Using the  fact  that  the  drag force constitutes  the primary force on  the  particle we finally obtain 

The  sum  extends over the  sand  and biomass particles. For  heavy particles, the last two terms 
expressing fluid-particle correlations are small compared to  the first term.  Retaining only the first 
term  and  assuming  that this particle average is equal to  the gas phase ensemble average we obtain 
the final result, a dissipative term 

waj = -2-&j  
CrkPk -. 

k=s,b 7 k , 1 2  

In the case of isotropic modelling, contraction of the above expression reduces to  that used  by  Louge 
and Jenkins (1993) and Bolio and Sinclair (1995). 

The mass transfer  related interfacial term will be modeled  when we have more insight into the 
problem as brought by simulations of simplified situations. 

In  addition to closure of the unknown correlations in the  stress equations, a transport  equation 
needs to  be supplied for the Assipation rate E .  Although such a derivation is  feasible using a similar 
derivation as above, this equation would contain a large number of correlations. Therefore, usually, 
a more heuristic  approach is taken  and a transport equation is  borrowed from incompressible single 
phase flows and expanded to include the effect of the interfacial transfer. The equation proposed 
here is 

where the right  hand  side of the equation consists of production and  dissipation,  turbulent  diffusion 
as modeled by a generalized gradient diffusion hypothesis and  the interfacial transfer We. 
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2.5.4 Species 

As f a r  as gas-phase reactions are concerned (tar  to gas conversion), these  are  handled  similarly 
to the biomass, i.e. the average rate of reaction is calculated from the  mean mass fractions  and 
temperature: 

a$& = apR6 (Y ,  T )  
" 

(94) 
As far  as interfacial  transfer is concerned,  these  are only relevant for the  tar and gas species. 

The combined terms Hgt + form a mass source for the species equations  originating &om 
solid to gas phase reactions. These are again  calculated at the mean temperature  and solid mass 
fractions 

H g <  + rgpjt = Q6PbR((Y1 r> " 

(95) 

2.5.5 Heat 

The enthalpy  equation contains two unknown fluxes and three  source  terms. The molecular and 
turbulent fluxes are modeled together  in  terms of the gradient of the  mean gas temperature: 

The mean  heat of gas-phase reaction  are  calculated from the mean  reaction  rates. This is identical 
to  the procedure used for the reaction  terms  in the species equations. 

For apparent reasons, the surface heat flux, F,, and  the convective heat flux, rg%, are  set  equal 
to  the corresponding  terms in the particle  equations.  Thus, we have 

i=s,b 

These  equalities  are  a  direct result of the integrated  jump  conditions  mentioned in the  introduction 
of section 2.5. 

2.5.6 Equation of state 

The averaged equation of state for the gas is written as 

where the correlation between the species mass fractions and temperature  are neglected. This is a 
reasonable assumption since the species concentration  fluctuations are expected to  be  small. 

21 



3 Numerical method 
Numerical codes t,hat have  been used in  1itt:rat~ux-c (:it11 be broatllv divided into two t:i:tsses. i)  
Methotis bwerl or1 extcmsion of the SIMPLE dgorithm. ii)  Methods based on extensions o f  a code 
called KFIX (fivard  and Torrey, 1977). 

Codes belonging to  the first class are usually employ a fully implicit time  discretization.  In 
these algorithms, the difference equations are solved  in a sequential manner  and  updated  until 
overall convergence is reached. One of the drawbacks of these  algorithms is that it is not obvious 
how to  obtain  the pressure and  the volume fractions. Usually one of the mass conservation equations 
is chosen as the  candidate for the volume fraction whle  the  other  (or  the  mixture) is taken as the 
basis  for a pressure correction equation. Effects of the solids pressure can also be heuristically 
accounted for (Syamlal, 1998). Our own experience has shown that (depending on the timestep) 
between 10 and 20 iterations per timestep  are necessary to obtain convergence. 

The second class of methods is of a more explicit nature,  although all interphase  transfer mech- 
anisms are  treated implicitly. Here, the gridpoints  are visited sequentially and at each of those 
points an iterative schemes drives the discrete  equations at that point to  convergence. Even when 
the  iterative scheme at a point is efficient, the overall convergence is dominated by  low wavenumber 
errors which damp very  slowly, a situation exceedingly expensive on large grids. 

In  the present  paper, a new algorithm is outlined based on simultaneous  solution of the volume 
fractions (hence, the solids pressure) and  the gas pressure. The  method  can be viewed as an 
extension of the single-phase pressure correction method to  the multifluid case. 

3.1 Numerical discretization 
The discretization is based on  the finite volume method on a two dmensional staggered  grid which 
is the most suitable for the low Mach number flow  of interest. As this  method is well established 
the discussion is restricted to  the necessary details  and deviations from standard procedure. 

3.1.1 Spatial  discretization 

One major weakness of most multifluid discretizations is the  appearance of numerical diffusion 
caused by the use of &st order upwind schemes for approximating the convective terms. Its effect 
is found to  be most severe in the mass conservation equations due  to  the lack of physical diffusion. 
Numerical diffusion is however also known to plague turbulence and momentum  equations, especially 
when stress  transport closures are used. As f a s  as fluidized bed applications itre concerned, numerical 
diffusion leads to unphysical ‘bubble’ (i.e. regions containing few particles)  shapes having a pointy 
roof instead of the more spherical shape as found in experiments (Syamlal, 1997). 

To reduce this effect, all convective terms  are approximated using a nonlinear TVD (Total 
Variation Diminishing) scheme. Cell  face  values are calculated from an upwind value and a suitable 
antidiffusive part,  their blend being controlled by the local gradients in the solution. We have 
selected Roe’s modified second order upwind scheme  combined with the Van  Leer flux limiter 
(see e.g. Hirsch, 1990) because of its good performance in scalar convection problems (see e.g. 
Tamamidis and  and Assanis, 1993). Roe’s scheme is second order accurate in smooth regions and 
reduces locally to first order when the solution is non-smooth. 

Besides accuracy, TVD schemes  have the favorable property that no new extrema  are  created 
in the solution. This is especially important for inherently positive variables, such as turbulence 
parameters  or volume fractions which are bounded between 0 and 1. 
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3.1.2 Temporal  discretization 

Aftcr spatial tliscretization, a set of ODE'S results that must be integrated i n  tirnc. The flow of 
interest is a very low Mach  number flow. Hence, the timestep restriction  related to the  propagation 
of acoustic modes is  much stronger compared to  the  Courant  restriction and should be  removed for 
numerical efficiency. This is achieved by implicit treatment of the pressure  gradient, of the mass 
fluxes in the mass conservation equations and of the  equation of state. 

The  gradient of solid pressure in the solids momentum equations is also treated implicitly. It 
is basically the dependence of Pa on cr that determines the stiffness of the problem, and hence the 
timestep  restriction. 

In view of the above restriction there is no need  for other than explicit treatment of the convective 
terms;  furthermore,  in practice the  timestep is chosen smaller than  the Courant  limit. Finally, 
slightly better resolution can be achieved with explicit TVD schemes compared to  their implicit 
counterparts. 

All terms associated  with  transfer processes between phases, i.e. mass momentum and  heat 
transfer are treated implicitly, this decision being strongly  dependent on the application. For 
example, the timescale associated with gas-particle drag  interaction  depends  strongly  on the  particle 
diameter while the timescale of mass transfer  depends  on  the  temperature at which biomass pyrolysis 
occurs. However, implicit treatment of these  term broadens the applicability of the code to other 
reactive multiphase system, increasing its generality. 

Finally, all diffusion  processes are also treated implicitly. The  timestep restrictions in the m- 
ious equations  are linear functions of the diffusion  coefficients and inverse quadratic  functions of 
the cellsize. In  turbulent flow where  diffusion  coefficients  may be  appreciable,  this may lead to 
restrictions, especially when the grid is heavily refined. 

3.2 A model problem 
A full discussion of the algorithm would be very  lengthy. As the  crux of the numerics lies in  the 
solution of the hydrodynamic  subproblem, we have chosen to  illustrate  the solution  procedure for the 
mass, momentum  and energy equations in absence of chemical reactions. We also restrict ourselves 
to a single particle class and exclude turbulence. We immediately give the discrete forms of the 
differential equations a s  these form the basis of the discussion of the  iterative algorithm  in the next 
subsection. 

The mass conservation equation for phase IC reads 

Here, Lh denotes  the numerical divergence operator  and MLcl is the massflux vector (crpV):+I .  
Note that  the mass  transfer  terms are zero because of the absence of chemical reactions. Both 
model energy  equations read 

and 
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for the gas  phase  and 

for the solid  phase. The convective part  has been written non conservative; the motivation for 
this will be clear  during discussion of the solution  algorithm. Gh denotes the numerical gradient 
operator (Note: Gh = Lz). Again Q k  contain  the explicit convective contributions for phase k.  
The  star  notation  on  the stress tensors C k  mean that  they  are handled in a mixed manner, i.e. 
the normal part is handled implicit while the transposed part is handled explicitly. This effectively 
decouples the z and y-momentum equations.  Finally we have the two implicitly treated  equations 
of state: 

This  completes the description of our model problem, the next  subsection  deals  with the algorithm 
to solve it in an efficient and  stable  manner. 

3.3 Solution  algorithm 
The algorithm  basically consists of two steps.  The first in which the energy  equations are solved 
and where predictor d u e s  for the velocities are generated, the second which solely contains the 
iterative  part of the algorithm  and enforces mass conservation for all phases. 

3.3.1  Step 1: Temperature  solution  and  velocity  prediction 

First,  the energy  equations as discretized  in  equations (101,102) are solved for the new-time  phase 
temperatures, c+'. The linear  system  arising from the discretization  has the following form 

Here, the  submatrices AT contain  contributions from the time-derivative, phasic coupling  and 
diffusion fluxes and have a standard 5-point structure.  The submatrices KTs are diagonal. This 
matrix is not a standard 5 (or 7 in 3D)-point  matrix of size N .  To avoid this  complication, the 
so-called partial  elimination  algorithm  (Oliviera  and  Issa, 1994) is usually employed where the 
dependency between the phases is algebraically  eliminated  leading to 2 systems having standard 
structure. However, this  procedure is only formally correct on a point by point basis. It  can not be 
done in  full on the  system as given above. We therefore  do not resort to these  approximations and 
solve the complete  system  (107). The detailed  procedure is outlined below. 
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and 

The purpose of the nonconservative form should now be clear. A conservative  method would  need 
the new time densities  and volume fractions, both of which are  unavailable at this time. The linear 
system  again has  the following  form: 

As illustrated  above, the  structure of the linear  systems  arising from the coupled energy equations 
and from the phasic coupled momentum  equations is identical.  Their  numerical  properties are also 
comparable, e.g. both  are diagonally dominant  due to  the timestepping. This makes the linear 
systems suitable  to  iterative solution.  Krylov  methods have gained popularity for the solution of 
large  sparse  systems over the more classical iterative schemes (e.g. Golub  and Van Loan, 1989). 
Because of its  stability properties, we use GMRES (Saad and Schultz 1986) combined with  suitably 
chosen preconditioners for the solution of these  systems  (Note that with GMRES we do not exploit 
the  symmetry of the linear  systems). 

To enhance convergence, GMRES is applied to  the preconditioned system 

"'AX = M"b (111) 

where Ax = b denotes the original system  and M is the  preconditioner. M should  approximate A 
at low cost and should be easily invertable  (in GMRES several systems of the form Mz = y need 
to be  solved). In  the present work M is approximated by the following matrix 

where the Ak blocks have been approximated by their diagonals, i.e. A; = diag(Ak). Hence, the 
preconditioner is obtained by neglecting the point to point coupling in the equations. The phasic 
coupling is  however kept. As the phasic coupling is the  dominant mechanism in the equations M 
tends to  be a good  approximation to A. As already  indicated, the preconditioning leads to systems 
of the form Mz = y .  These  systems are explicitly inverted on a point by point basis. 

3.3.2 Step 2: mass conservation iteration 

In step 2 of the overall algorithm, mass conservation will be enforced. Recall the  discrete mass 
conservation  equations 
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Those rc:I;Lt,iorls c:orlstittltct two f i t : l ~ l  c q ~ ~ ~ t , i o r l s  for the volumr: fractions (two tic?ltls), t,fw velocities 
(two fklcis) anti thc gas density (one field). No te  that obeys the  summation rule: x k  a;+' = I and 
the gas cicnsity p;+' is related to  the gas prt3ssure Py+' and the new time  temperature Tt1 by the 
equation of state (105).  firtherrnore,  the velocity corrections can be related to corrections of gas 
pressure and solids pressure (or volume fraction via (106)). Therefore, the above mass conservation 
equations may be viewed as equations for the corrections to gas pressure, Pi and volume fraction 
(e.g. a:). 

Normally, a link is made between velocity corrections and (gas-) pressure corrections. Here this 
link needs to  be extended to include corrections to  the solids pressure as well. It is  well-known that 
these relations (to be derived from the discrete momentum equations)  should include the effects of 
interphase  momentum  transfer. The link is established as follows. 

Subtracting  the predictor equation (108,109) from the 'desired' discretization (103,104) gives  for 
the x-component of velocity (U) gives  two coupled equations for the velocity corrections 

and 

The Dk terms are  the 'driving forces' behind the corrections. Note that  the viscous parts have 
been neglected in  the  subtraction (See Van Kan (1986)  for a formal justification).  Rearranging the 
equations gives 

where we have used the  shorthand H k  for the time  related coefficient (ap)ZAt. This system  can 
be solved analytically to reveal the relation between the velocity corrections and  both pressure 
corrections. This may be considered a generalization of relations usually found in literature  in  the 
absence of solids pressure. (see e.g. Oliviera and Issa, 1994). 

As the mass conservation equations are nonlinear, some form of iteration needs to  be imple- 
mented. Several possibilities may be identified: 

1.  Distributive  iteration. 

This is a general term for iterative schemes that in some way rely on subsequent  solution of 
equations. To be more specific, one may  successively  solve the solids volume fraction from the 
solids mass equation  and solve gas pressure from the imbalance in  the gas mass equation. This 
is only one  example from many schemes found in literature. Note that decoupled iterations 
are usually imbedded in the overall iterative scheme taking place over all of the equations. 
Hence, these  methods  are  strongly  related to  the SIMPLE class of algorithms. 

2. Newton's method  and  approximate Newton. 

Writing all variables as their present approximation  and a correction and neglecting products 
of corrections leads to a linear system for the simultaneous volume fraction and gas pressure 
corrections. This linear system is sparse. When implemented concisely, this scheme converges 
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3.  Nonlinear multigrid iteration. 
The nonlinear multigrid algorithm is the most general iterative  approach to the solution 
of nonlinear problems. It is not as widely  used as the linear variant, mostly due  to  the 
complexity of implementing such a scheme. There  are however examples in fluid mechanics 
where enormous  speedups have been  reported compared to single grid  methods. A very 
important  property of the  iterative  method is that  the reduction  factors  are  independent of 
the gridsize, i.e. the amount of work increases linearly with the number of unknowns. 

The third option  has been implemented in  the present code. The reader is referred to the 
standard  literature on multigrid methods for the  standard nonlinear algorithm (Wesseling,  1992). 
The most important ingredient of a multigrid  algorithm is the smoother used to smooth  the residual. 
Here, one smoothing  step consists of a linearization of the equations in terms of the fraction and 
pressure correction. After that,  an  alternating ‘zebra’ Gauss Seidel solver is  used to smooth  the 
error (Wesseling, 1992). Note that solving for the fraction and pressure corrections on a line leads 
to a band matrix (bandwidth: 7 for 1 particle class, 11 for 2 particle classes). All other components 
of the multigrid  algorithm as used here are fairly standard (e.g. injection as restriction  operator 
and second order  prolongation). 

4 A validation study 
In this  section we present a qualitative  validation study of a bubbling fluidized bed. The main 
objective of this study is to see whether the  main characteristics of a bubbling  bed  can be predicted 
with the kinetic  theory model and if the numerical approach works stable and efficient  for a flow 
problem of this  type. Therefore, a bed is studied  that is stripped from most of the complications 
that have been discussed in  the modeling section, i.e. a single particle class system is studied 
without chemical reactions  and  turbulence. 

4.1 Geometry, physical model, and boundary  conditions 
The geometry consists of a twedimensional dense fluidized bed of 0.8 m wide and 1.25 m hgh. 
Initially, the bed is  filled with typical sand  particles with diameter dp = 500pm  and density p p  = 
2500 k g / m 3  to a height of about 0.5 m ‘Filled’ in t h s  respect means that  the particle volume fraction 
is prescribed at 0.6 which is close to  the maximum packing of solids corresponding to a volume 
fraction of 0.64 The coefficient of restitution is empirically set to 0.9. The fluidized bed is uniformly 
aerated at  the  bottom with a superficial gas velocity of 1 m / s .  Note that this is well above the 
minimum fluidization velocity, Vmr, which is approximately 0.25 m / s .  The bed is therefore expected 
to be in the bubbly flow regime. 

In the case study under consideration, only a single particle class is present. Following the 
above model for the binary mixture, the particle  distribution function has been  chosen as Gaussian. 
Furthermore,  turbulence in the carrier-phase is neglected in this simplified simulation. The model 
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t . t l ( b I l  t)(:(.ottl(:s O C ~ I ~ ; L I  t,o t/liLt prc:sctrlt,ttci t>y Ilirlg ;LII ( I  Citiilspow ( L W O ] .  fittrct w(: : L I ) I I I V  t tlis [llo(fel to 
tho hbbling flllidizctl bet1 unticr t h e  conditions outlincd above. 

The ttqI1ations ; - m  discretized o r 1  ;I Imiforrrl 30 tirrltts 76 i n  the horizont,al ; m i  vertical directions 
rttspectively. This is a typical resolution for bubbling fluidized  beds  clisctlssed i n  the literature.  The 
appropriate  boundary conditions specified are: at the  inlet,  the gas fraction is set to unity and 
its velocity equal to  the superficial velocity; at  the top of the bed, the gas pressure is fixed to  be 
atmospheric; at  the side walls, both gas-phase components are set  to zero (no-slip condition), while 
the solids are allowed to slip freely along the wall (no shear stress).  This is consistent with the 
assumption of a  Gaussian velocity distribution for the particle velocity. A run of 10000 timesteps 
has been performed with the timestep fixed at 2.10-4s. 

The new numerical algorithm performed well during the simulation and did not show any in- 
stabilities.  Calculations of this  type are inherently intensive due to  the  transient behavior and  the 
required implicitness in  the algorithm; the simulations described above required several hours of 
computing time  on a Cray J90. Furthermore,  it  appears  that  the  resolution used in the present 
simulation is insufficient to support all the details of the flow. 

4.2 Results and discussion 
The calculations are  started with  a slight nonuniformity in the solids volume fraction: more specif- 
ically, the solids volume fraction at  the left hand side of the bed is set to 0.5 rather  than 0.6. This 
inhomogeneity is induced to speed up  the development of the flow toward the bubbly regime. Simi- 
lar procedures to reduce start-up  time  are  reported in literature  (Peirano, 1998). Results at different 
stages of the simulation are depicted in  Figures 1 to 4. In  these figures, contours of the solids volume 
fraction and  the velocity fields of both  the gas and solid phases are shown. At start-up,  the gas 
flow at  the distributor pushes the solids upward and creates a layer of somewhat more compacted 
solids. At the  same  time, a gas layer  is created at  the  bottom of the bed. Owing to  the form of the 
drag  interaction,  the  particle slip velocity in  a  dilute region  is higher than in  a compacted region. 
Therefore, the solids start to fall  down towards the distributor  through the formed gas layer. This 
in turn  creates a more compacted region at  the distributor which  is subsequently convected upwards 
due to  the increased drag with the gaseous phase. This process repeats itself and several layers can 
be can  be identified in figure 2, with increasing number of layers in figure 3. These layers are mostly 
restricted to  the right  hand side of the bed as the left hand side is perturbed  due  to  the initial 
conditions used for the solids volume fraction. 

At 0.4 s of physical time (figure 1) the velocity fields of both phases are still  spatially uniform. 
As time proceeds, the  perturbations induced at  the left hand  side start  to effect the remainder of 
the bed. In  particular,  at 0.8 seconds after start-up  the first void region (‘bubble’) is  formed in 
the lower left corner.  This ‘bubble’ has not only a local  effect but affects the entire bed. It can 
be seen from figure 2 (and subsequent figures) that  the gaseous phase prefers to flow through the 
void  regions rather  than through the bed; obviously, the reduced drag  in these regions  plays an 
important role. The process of layer formation just described persists in  the right hand  side of the 
domain, and as a  result, the bed expands appreciably as can be seen from figure 3 where the bed  is 
at  its maximum expansion. This also has consequences for the numerical domain that is to be used 
in the  computations, as too  short  a  domain will result in a loss of particles. 

At approximately 1.5 seconds after start-up of the fluidized bed, the solid phase at  the  top of 
the bed is sufficiently diluted  and an approximately  statistically  steady situation is reached. At this 
point, the  disturbances have  reached the right hand side of the bed and  an unsteady motion is seen 
throughout the bed with  both void and dense regions.  In  most parts of the bed the solids volume 
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f t . ;u : t io I t  is ; h ) v o  t 0  w i l i l ( !  i n  t , h c  voicl rcgiotls thc solitls fr;\c:t,iorl is gcntxxlly M o w  5 ‘5). ’Ttlrollghout 
t iw  brtti t ho  velocity fit:ltls o f  t ,hc phascs exhibit circulating nlotion. The circldating rno t io t l  of the 
solid phase is responsible for sustaining t>he particle fluctuating motion. This fluctu:tt,ing motion in 
t,urn gives rise to a ‘particle pressure’ which partially carries the weight of the solids i n  the bed and 
prevents local overcompacting. The circulatory motion confirms our intuition  that k - E models for 
the gas phase  are  inappropriate (Wilcox, 1994). 

This  granular  temperature varies significantly throughout the bed, from almost zero in the 
freeboard where velocity gradients are  absent (see e.g.  figure 3 and 4) to approximately  in the 
dense regions of the bed. The low granular  temperature as predicted by the model in the  dilute 
region is unrealistic and is due to  the approximation of the  distribution  function as Gaussian; one 
would normally expect the  hghest granular  temperature in those regions. Our further  steps  in  this 
modeling effort will  remove the Gaussian assumption. 

Although no quantitative comparisons are made at  this  point,  the  qualitative behavior of the 
fluidized bed is well reproduced exhibiting  transient flow even with steady  state, uniform boundary 
conditions. Furthermore,  both dense and void  regions are predicted. It is therefore concluded that 
e m  a simplified kinetic  theory of dense gases applied to the flow of particles in a gas is capable 
of predicting the behavior of bubbling fluidized beds (at least qualitatively). This conclusion is 
expected to prevail for the binary mixture.  Future work will focus on model improvement for 
quantitative  predictions. 

5 Conclusions and future  work 
A  mathematical model has been presented which  is capable of predicting the (thermo) fluid dynamics 
of biomass pyrolysis in a fluidized bed reactor.  The model will be used for situations where the 
biomass particles are small enough to have the pyrolysis occuring in  the kinetic regime, i.e. diffusion 
limitations are assumed negligible. The  rate  at  whch pyrolysis occurs is, however, determined by 
the  rate  at which heat  can be supplied by the  sand and the carrier gas. 

The model comprises of a  systematic derivation of the continuum equations of the gaseous and 
solids phases which  is the most suitable for the present application. Separate averaging procedures 
have been outlined and applied to  the gas and particulate phases leading to macroscopic equations 
requiring closure relations to  obtain a solvable system. 

For the gas phase, closure is provided dong  the lines of the extension of single particle class 
results to  the presence of two different solids. Furthermore, exchange terms with the solid phases 
are incorporated expressing mass, heat  and energy transfer. Gas phase  turbulence is accounted for 
by the inclusion of a stress  transport model which is modeled after single-phase flow closures but 
with some extension to account for the presence of the particles. 

On the  other  hand, for the solids, closure is  provided  for by using the framework of kinetic 
theory of binary  granular media, extended here to partly include the presence of an  interstitial gas. 
In  this framework the particles are modelled as slightly inelastic spheres. All closure relations are 
written in t e r m  of the single particle distribution functions whch  are solutions to the respective 
Boltzmann equations. At the present time Gaussian approximations to these distributions have 
been made. The collisional transfer includes the heat transfer between sand  and biomass particles 

As the model describing the process is both nonuniform and  transient, calculations are compu- 
tationally intensive. F’urthermore, the equations  are very  stiff due  to  the various timescales in the 
problem. Therefore,  a both efficient and robust numerical algorithm is needed to  obtain reasonable 
computational times and  stable  integration. Such an algorithm has been presented, and  has been 
shown to work  well in the test case considered. 
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Figure 1: Contours of the solids volume fraction (a), velocity vectors of the gas phase (b) and of 
the solid phase  (c) at 0.4 s. after startup. 

Figure 2: Contours of the solids volume fraction (a), velocity vectors of the gas phase (b) and of 
the solid phase (c)  at 0.8 s. after startup. 
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Figure 3: Contours of the solids volume fraction (a), velocity vectors of the gas phase (b) and of 
the solids phase  (c) at 1.2 s. after  startup. 

Figure 4: Contours of the solids volume fraction (a), velocity vectors of the gas phase (b) and of 
the solid phase (e) at 1.8 s. after startup. 
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This t,t?st cast co~~sistt~d o f  a. t,wtrtiirrlc!rlsioI1;11 bubbling Auitiized t w t l ,  urliforrrlly ;t(?r;LtC?tf at,  t,he 
t )ot3torn section. All solid purticles i n  the bed belonged to the same particle class. AIthollgh this 
test case constitutes a simplification of the complete model,  it does produce  results i n  qualitative 
agreement with  experiments predicting both  transient flow arising from  physical instabilities, ob- 
served flow patterns, and ‘bubble’ (regions having few particles)  formation, even  when uniformly 
aerated. 

Future developments include the  extension of the above  model to non-Gaussian distribution 
functions for the particle phases whch will  lead to a more accurate  description in the  dilute region 
of the fluidized bed reactor  and will  allow  for a more detailed analysis of the effect of the carrier gas 
on the particles.  This extension will be made along the lines of Grad’s  theory (see Peirano, 1998), 
extended to a  binary  granular  mixture. 

The model will first be validated against  suitable pyrolysis experiments  (Scott  et  al., 1988; 
Stiles  and  Kandiyoti, 1989) to verify its predictive capabilities. As it is formulated, the model is 
well suited for the optimization of reactor geometries and operating  parameters, such as operating 
temperature,  injection procedures, etc. and  the present model will be used to optimize the NREL 
fluidized bed pyrolysis reactor. 
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